Evaluation of spectroscopic and solvatochromic properties of Quinquangulin and Rubrofusarin: Comparative analysis with data from Density Functional Theory.

Leonardo M. Moreira (PQ), Juliana P. Lyon (PQ), Adriina Lima (IC), Antonio Eduardo da Hora Machado (PQ), Noboru Hioka (PQ), Lucia Codognuto (PQ), Hueder Paulo M. de Oliveira (PQ)

1 Departamento de Engenharia de Biossistemas, Universidade Federal de São João Del Rei, São João Del Rei, MG, Brazil.
2 Departamento de Ciências Naturais, Universidade Federal de São João Del Rei, São João Del Rei, MG, Brazil.
3 Universidade Federal de Uberlândia/Instituto de Química – Laboratório de Fotoquímica. Uberlândia, MG – Brazil.
4 Universidade Federal de Uberlândia/Instituto de Química – Laboratório de Fotoquímica. Uberlândia, MG – Brazil.
5 Universidade Estadual de Maringá/Departamento de Química. Maringá, PR – Brasil.
6 Universidade Federal de São Paulo, Departamento de Ciências Exatas e da Terra, Diadema, SP – Brasil.
7 Universidade Camilo Castelo Branco / Rod. Presidente Dutra Km 138, São José dos Campos, SP - Brasil.

E-mail: huederpaulo@yahoo.com.br

Introdução

Quinquangulin and Rubrofusarin (figure 1) are two well known naphthopyrones employed for several pharmacological purposes. Naphthopyrones are compounds with interesting biochemical actions, such as potential to modify the enzyme regulator properties of the Calmodulin (CaM). In this work, excitation and emission spectra are evaluated in order to elucidate the properties of these compounds in several solvent systems.

![Figure 1 - Molecular Structures of Quinquangulin and Rubrofusarin](image)

Each solvent system (water/ethanol and water/acetonitrile) has peculiar characteristics regarding physico-chemical properties. The quantum yield of these naphthopyrones obtained in "pure" water is low, being higher in several "pure" organic solvents. This data reinforces the relevance of tests involving mixtures of solvents, since the water, inhibits the quantum yield of the naphthopyrones. In this way, mixtures of solvents could to promote an optimum condition in order to obtain a maximum quantum yield. It demonstrated that maximum excitation wavelength can be significantly modulated changing the proportion of organic solvent in the water/organic solvent system. Quinquangulin, for example, presented the higher wavelength of maximum excitation in an ethanol-water mixture containing 70% of water (figure 2).

![Figure 2 - Variation in the maximum excitation as function of the water percentage of quinquangulin (a) and rubrofusarin (b) in water/acetonitrile mixture.](image)

Conclusões

The present results demonstrate that the organization between ethanol and water molecules as well as acetonitrile and water affects significantly the photophysical properties of the quinquangulin and rubrofusarin. The difference between the solvatochromic and spectroscopic profiles of these compounds in the solvent systems evaluated is associated to the lower capability of the acetonitrile to form hydrogen bonds when compared to ethanol.

Agradecimentos

Fapesp, CNPq.