Evaluation of antioxidant effects in vitro of Garcinielliptone FC isolated from *Platonia insignis* Mart

Joaquim Soares da Costa Júnior¹², Alexandre B. F. Ferraz¹ (PQ), Bartholomeu A. Barros Filho² (PQ), Chistiane M. Feitosa³ (PQ), Antonia Maria das Graças Lopes Cító⁴, Rivellison Mendes de Freitas⁵ (PQ), e Jenifer Saffi⁵

¹Laboratory of Genetic Toxicology, Post-Graduation Program in Genetic and Applied Toxicology, Lutheran University of Brazil; zip code 92425-900, Canoas, RS, Brazil. *e-mail: jquimjr@gmail.com
²Department of Chemistry, Federal Institute of Piauí, zip 64000-040, Teresina, PI, Brazil.
³Department of Chemistry, Federal University of Piauí, zip 64049-550, Teresina, PI, Brazil.
⁴Department of Pharmacology, Federal University of Piauí, zip 64049-550, Teresina, PI, Brazil.
⁵Department of Basic Health Sciences – Federal University of Health Sciences of Porto Alegre, zip code 90050-170, Porto Alegre, RS, Brazil.

Palavras Chave: *Platonia insignis*, *Garcinielliptone FC*, Antioxidant.

Introduction

The Clusiaceae family includes 20 genuses, divided in 900 species, distributed in tropical regions of the world (Santos et al., 1999). Besides, some plant of Clusiaceae family has its pharmacological properties associated to xanthone derivative presence, which has antioxidant and anticarcinogen activities¹.

*Platonia insignis* Mart. (Clusiaceae), commonly known as “bacuri”, is a thick-skinned fruit, with approximate dimension of an orange, which contains a large quantity of resins. The pulp enclosing the seeds is white, bittersweet, with a pleasant smell and taste. The fruit can be consumed raw or in the form of juice, ice-cream or jam².

The seeds were dried at 55°C and powdered. The 848.2 g of crush yielded was extracted with hexane (63%, w/w). The hexanic extract was subjected to silica gel (open column, 400 g, 4 × 60 cm, 1 ml/min) cc and eluted with n-hexane containing EtOAc increased amounts of and washed with methanol at process end.

The resultant hexanic extract yields 51 subfractions. The fraction 33 was further purified on TLC plates and eluted with CHCl₃–MeOH (9:1) to yield 1/1a (22 mg) was identified by spectroscopic methods.

Garcinielliptone FC (1/1a): yellow oil; ¹H and ¹³C NMR, spectroscopic data, EIMS m/z (%): 602 [M⁺] (1), 465 (6), 341 (8), 231 (10),177 (3), 137 (20), 109 (11), 69 (100). Their structure and molecular formula (m/z 603.3; C₃₈H₅₀O₆) were confirmed by GC-MS and NMR data (Fig 1).

Garcinielliptone FC isolated from the seeds of *P. insignis* were assessed in vitro tests (thiobarbituric acid reactive species (TBARS) assay, hydroxy radical-scavenging activity, and scavenging activity of nitric oxide (NO)) (Fig. 2).

Results and Discussion

In conclusions, our results support that the GFC compounds exhibits an antioxidant action preventing lipoperoxidation, probably due to hydroxyl radical scavenging activity. Further studies currently in progress will enable us to understand the precise action mechanisms of this bioactive compound.

Figure 1 – Garcinielliptone FC (1/1a)

Figure 2 - Antioxidant effects in vitro of Garcinielliptone FC (GFC) against peroxyl radicals generated by AAPH and scavenging activities against nitric oxide (NO) and hydroxyl radicals. A lipid-rich system was incubated with a free radical source (AAPH) and the effect of different concentrations of GFC on the lipoperoxidation was measured.

Conclusion

Acknowledgements

The authors are grateful to FAPEPI and Instituto Federal de Educação, Ciência e Tecnologia do Piauí.

References